vllm.v1.sample.ops.topk_topp_sampler ¶
TopKTopPSampler ¶
Bases: Module
Module that performs optional top-k and top-p filtering followed by weighted random sampling of logits.
Implementations may update the logits tensor in-place.
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
__init__ ¶
__init__(
logprobs_mode: LogprobsMode = RAW_LOGPROBS,
) -> None
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
forward_cuda ¶
forward_cuda(
logits: Tensor,
generators: dict[int, Generator],
k: Optional[Tensor],
p: Optional[Tensor],
) -> tuple[Tensor, Optional[Tensor]]
More optimized implementation for top-k and top-p sampling.
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
forward_native ¶
forward_native(
logits: Tensor,
generators: dict[int, Generator],
k: Optional[Tensor],
p: Optional[Tensor],
) -> tuple[Tensor, Optional[Tensor]]
PyTorch-native implementation of top-k and top-p sampling.
The logits tensor may be updated in-place.
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
apply_top_k_only ¶
Apply top-k mask to the logits.
This implementation doesn't involve sorting the entire vocab.
The logits tensor may be updated in-place.
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
apply_top_k_top_p ¶
Apply top-k and top-p masks to the logits.
If a top-p is used, this function will sort the logits tensor, which can be slow for large batches.
The logits tensor may be updated in-place.
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
flashinfer_sample ¶
flashinfer_sample(
logits: Tensor,
k: Optional[Tensor],
p: Optional[Tensor],
generators: dict[int, Generator],
) -> Tensor
Sample from the logits using FlashInfer.
Statistically, this function is equivalent to the random_sample
function. However, this function is faster because it avoids sorting the logits tensor via rejection sampling.
NOTE: The outputs of this function do not necessarily match the outputs of the random_sample
function. It only guarantees that the outputs are statistically equivalent.
NOTE: This function includes CPU-GPU synchronization, while random_sample
does not. Call this function at the end of the forward pass to minimize the synchronization overhead.
Source code in vllm/v1/sample/ops/topk_topp_sampler.py
random_sample ¶
Randomly sample from the probabilities.
We use this function instead of torch.multinomial because torch.multinomial causes CPU-GPU synchronization.