Skip to content

vllm.model_executor.models.motif

Inference-only Motif model compatible with HuggingFace weights.

MotifForSequenceClassification module-attribute

MotifForSequenceClassification = as_seq_cls_model(
    MotifForCausalLM
)

MotifAttention

Bases: Module

Source code in vllm/model_executor/models/motif.py
class MotifAttention(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
        bias: bool = False,
        bias_o_proj: bool = False,
        cache_config: Optional[CacheConfig] = None,
        prefix: str = "",
        attn_type: str = AttentionType.DECODER,
    ) -> None:
        super().__init__()
        layer_idx = extract_layer_index(prefix)
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        # MistralConfig has an optional head_dim introduced by Mistral-Nemo
        head_dim = getattr(config, "head_dim", None)
        if head_dim is None:
            head_dim = self.hidden_size // self.total_num_heads
        self.head_dim = head_dim
        # Phi models introduced a partial_rotary_factor parameter in the config
        self.partial_rotary_factor = getattr(config, "partial_rotary_factor",
                                             1)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        assert self.num_heads % 2 == 0, 'num_heads should be even'
        assert self.num_kv_heads % 2 == 0, 'num_heads should be even'

        self.qkv_proj = QKVParallelLinear(
            hidden_size=hidden_size,
            head_size=self.head_dim,
            total_num_heads=self.total_num_heads,
            total_num_kv_heads=self.total_num_kv_heads,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )

        self.o_proj = RowParallelLinear(
            input_size=self.total_num_heads * self.head_dim,
            output_size=hidden_size,
            bias=bias_o_proj,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )

        self._init_rotary_emb(config,
                              rope_scaling=rope_scaling,
                              quant_config=quant_config)
        sliding_window = None

        self.lambda_init = self.lambda_init_fn(layer_idx)
        self.lambda_q1 = nn.Parameter(
            torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                    std=0.1))
        self.lambda_k1 = nn.Parameter(
            torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                    std=0.1))
        self.lambda_q2 = nn.Parameter(
            torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                    std=0.1))
        self.lambda_k2 = nn.Parameter(
            torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                    std=0.1))
        self.subln = RMSNorm(2 * self.head_dim, eps=config.attn_rms_norm_eps)

        params = {
            'differential_flash_attention_config': {
                'lambda_init': self.lambda_init,
                'lambda_q1': self.lambda_q1,
                'lambda_k1': self.lambda_k1,
                'lambda_q2': self.lambda_q2,
                'lambda_k2': self.lambda_k2,
                "subln": self.subln,
            }
        }

        diff_attn_err_msg = (
            'Set VLLM_ATTENTION_BACKEND="DIFFERENTIAL_FLASH_ATTN" '
            'to enable Differential Flash Attention.')
        try:
            self.attn = Attention(
                self.num_heads,
                self.head_dim,
                self.scaling,
                num_kv_heads=self.num_kv_heads,
                cache_config=cache_config,
                quant_config=quant_config,
                per_layer_sliding_window=sliding_window,
                attn_type=attn_type,
                prefix=f"{prefix}.attn",
                **params,
            )
        except TypeError as e:
            raise ValueError(diff_attn_err_msg) from e
        assert (self.attn.backend == _Backend.DIFFERENTIAL_FLASH_ATTN
                ), diff_attn_err_msg

    def lambda_init_fn(self, depth):
        return 0.8 - 0.6 * math.exp(-0.3 * (depth - 1))

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

    def _init_rotary_emb(self, config: PretrainedConfig,
                         rope_scaling: Optional[dict[str, Any]],
                         quant_config: Optional[QuantizationConfig]) -> None:
        is_neox_style = True
        is_gguf = quant_config and quant_config.get_name() == "gguf"
        if is_gguf and config.model_type == "llama":
            is_neox_style = False

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=self.rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=is_neox_style,
            partial_rotary_factor=self.partial_rotary_factor,
        )

attn instance-attribute

attn = Attention(
    num_heads,
    head_dim,
    scaling,
    num_kv_heads=num_kv_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    per_layer_sliding_window=sliding_window,
    attn_type=attn_type,
    prefix=f"{prefix}.attn",
    **params,
)

head_dim instance-attribute

head_dim = head_dim

hidden_size instance-attribute

hidden_size = hidden_size

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

lambda_init instance-attribute

lambda_init = lambda_init_fn(layer_idx)

lambda_k1 instance-attribute

lambda_k1 = Parameter(normal_(mean=0, std=0.1))

lambda_k2 instance-attribute

lambda_k2 = Parameter(normal_(mean=0, std=0.1))

lambda_q1 instance-attribute

lambda_q1 = Parameter(normal_(mean=0, std=0.1))

lambda_q2 instance-attribute

lambda_q2 = Parameter(normal_(mean=0, std=0.1))

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    input_size=total_num_heads * head_dim,
    output_size=hidden_size,
    bias=bias_o_proj,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

partial_rotary_factor instance-attribute

partial_rotary_factor = getattr(
    config, "partial_rotary_factor", 1
)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size=hidden_size,
    head_size=head_dim,
    total_num_heads=total_num_heads,
    total_num_kv_heads=total_num_kv_heads,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rope_theta instance-attribute

rope_theta = rope_theta

scaling instance-attribute

scaling = head_dim ** -0.5

subln instance-attribute

subln = RMSNorm(2 * head_dim, eps=attn_rms_norm_eps)

total_num_heads instance-attribute

total_num_heads = num_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_kv_heads

__init__

__init__(
    config: PretrainedConfig,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
    bias_o_proj: bool = False,
    cache_config: Optional[CacheConfig] = None,
    prefix: str = "",
    attn_type: str = DECODER,
) -> None
Source code in vllm/model_executor/models/motif.py
def __init__(
    self,
    config: PretrainedConfig,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
    bias_o_proj: bool = False,
    cache_config: Optional[CacheConfig] = None,
    prefix: str = "",
    attn_type: str = AttentionType.DECODER,
) -> None:
    super().__init__()
    layer_idx = extract_layer_index(prefix)
    self.hidden_size = hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = num_kv_heads
    if self.total_num_kv_heads >= tp_size:
        # Number of KV heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_kv_heads % tp_size == 0
    else:
        # Number of KV heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    # MistralConfig has an optional head_dim introduced by Mistral-Nemo
    head_dim = getattr(config, "head_dim", None)
    if head_dim is None:
        head_dim = self.hidden_size // self.total_num_heads
    self.head_dim = head_dim
    # Phi models introduced a partial_rotary_factor parameter in the config
    self.partial_rotary_factor = getattr(config, "partial_rotary_factor",
                                         1)
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings

    assert self.num_heads % 2 == 0, 'num_heads should be even'
    assert self.num_kv_heads % 2 == 0, 'num_heads should be even'

    self.qkv_proj = QKVParallelLinear(
        hidden_size=hidden_size,
        head_size=self.head_dim,
        total_num_heads=self.total_num_heads,
        total_num_kv_heads=self.total_num_kv_heads,
        bias=bias,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )

    self.o_proj = RowParallelLinear(
        input_size=self.total_num_heads * self.head_dim,
        output_size=hidden_size,
        bias=bias_o_proj,
        quant_config=quant_config,
        prefix=f"{prefix}.o_proj",
    )

    self._init_rotary_emb(config,
                          rope_scaling=rope_scaling,
                          quant_config=quant_config)
    sliding_window = None

    self.lambda_init = self.lambda_init_fn(layer_idx)
    self.lambda_q1 = nn.Parameter(
        torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                std=0.1))
    self.lambda_k1 = nn.Parameter(
        torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                std=0.1))
    self.lambda_q2 = nn.Parameter(
        torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                std=0.1))
    self.lambda_k2 = nn.Parameter(
        torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,
                                                                std=0.1))
    self.subln = RMSNorm(2 * self.head_dim, eps=config.attn_rms_norm_eps)

    params = {
        'differential_flash_attention_config': {
            'lambda_init': self.lambda_init,
            'lambda_q1': self.lambda_q1,
            'lambda_k1': self.lambda_k1,
            'lambda_q2': self.lambda_q2,
            'lambda_k2': self.lambda_k2,
            "subln": self.subln,
        }
    }

    diff_attn_err_msg = (
        'Set VLLM_ATTENTION_BACKEND="DIFFERENTIAL_FLASH_ATTN" '
        'to enable Differential Flash Attention.')
    try:
        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            per_layer_sliding_window=sliding_window,
            attn_type=attn_type,
            prefix=f"{prefix}.attn",
            **params,
        )
    except TypeError as e:
        raise ValueError(diff_attn_err_msg) from e
    assert (self.attn.backend == _Backend.DIFFERENTIAL_FLASH_ATTN
            ), diff_attn_err_msg

_init_rotary_emb

_init_rotary_emb(
    config: PretrainedConfig,
    rope_scaling: Optional[dict[str, Any]],
    quant_config: Optional[QuantizationConfig],
) -> None
Source code in vllm/model_executor/models/motif.py
def _init_rotary_emb(self, config: PretrainedConfig,
                     rope_scaling: Optional[dict[str, Any]],
                     quant_config: Optional[QuantizationConfig]) -> None:
    is_neox_style = True
    is_gguf = quant_config and quant_config.get_name() == "gguf"
    if is_gguf and config.model_type == "llama":
        is_neox_style = False

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=self.max_position_embeddings,
        base=self.rope_theta,
        rope_scaling=rope_scaling,
        is_neox_style=is_neox_style,
        partial_rotary_factor=self.partial_rotary_factor,
    )

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/motif.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

lambda_init_fn

lambda_init_fn(depth)
Source code in vllm/model_executor/models/motif.py
def lambda_init_fn(self, depth):
    return 0.8 - 0.6 * math.exp(-0.3 * (depth - 1))

MotifDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/motif.py
class MotifDecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        if rope_scaling is not None and getattr(
                config, "original_max_position_embeddings", None):
            rope_scaling["original_max_position_embeddings"] = (
                config.original_max_position_embeddings)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        attention_bias = getattr(config, "attention_bias", False) or getattr(
            config, "use_bias", False)
        bias_o_proj = attention_bias
        if hasattr(config, 'qkv_bias'):
            attention_bias = config.qkv_bias

        # By default, Motif uses causal attention as it is a decoder-only model.
        # You can override the HF config with `is_causal=False` to enable
        # bidirectional attention, which is used in some embedding models
        # (e.g. parasail-ai/GritLM-7B-vllm)
        if getattr(config, "is_causal", True):
            attn_type = AttentionType.DECODER
        else:
            attn_type = AttentionType.ENCODER_ONLY

        self.self_attn = MotifAttention(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=getattr(config, "num_key_value_heads",
                                 config.num_attention_heads),
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            bias=attention_bias,
            bias_o_proj=bias_o_proj,
            cache_config=cache_config,
            prefix=f"{prefix}.self_attn",
            attn_type=attn_type,
        )
        self.mlp = MotifMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            bias=getattr(config, "use_bias", False),
            prefix=f"{prefix}.mlp",
        )
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(positions=positions,
                                       hidden_states=hidden_states)

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mlp instance-attribute

mlp = MotifMLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act=hidden_act,
    quant_config=quant_config,
    bias=getattr(config, "use_bias", False),
    prefix=f"{prefix}.mlp",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = MotifAttention(
    config=config,
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    num_kv_heads=getattr(
        config, "num_key_value_heads", num_attention_heads
    ),
    rope_theta=rope_theta,
    rope_scaling=rope_scaling,
    max_position_embeddings=max_position_embeddings,
    quant_config=quant_config,
    bias=attention_bias,
    bias_o_proj=bias_o_proj,
    cache_config=cache_config,
    prefix=f"{prefix}.self_attn",
    attn_type=attn_type,
)

__init__

__init__(
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/motif.py
def __init__(
    self,
    config: PretrainedConfig,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.hidden_size = config.hidden_size
    rope_theta = getattr(config, "rope_theta", 10000)
    rope_scaling = getattr(config, "rope_scaling", None)
    if rope_scaling is not None and getattr(
            config, "original_max_position_embeddings", None):
        rope_scaling["original_max_position_embeddings"] = (
            config.original_max_position_embeddings)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      8192)
    attention_bias = getattr(config, "attention_bias", False) or getattr(
        config, "use_bias", False)
    bias_o_proj = attention_bias
    if hasattr(config, 'qkv_bias'):
        attention_bias = config.qkv_bias

    # By default, Motif uses causal attention as it is a decoder-only model.
    # You can override the HF config with `is_causal=False` to enable
    # bidirectional attention, which is used in some embedding models
    # (e.g. parasail-ai/GritLM-7B-vllm)
    if getattr(config, "is_causal", True):
        attn_type = AttentionType.DECODER
    else:
        attn_type = AttentionType.ENCODER_ONLY

    self.self_attn = MotifAttention(
        config=config,
        hidden_size=self.hidden_size,
        num_heads=config.num_attention_heads,
        num_kv_heads=getattr(config, "num_key_value_heads",
                             config.num_attention_heads),
        rope_theta=rope_theta,
        rope_scaling=rope_scaling,
        max_position_embeddings=max_position_embeddings,
        quant_config=quant_config,
        bias=attention_bias,
        bias_o_proj=bias_o_proj,
        cache_config=cache_config,
        prefix=f"{prefix}.self_attn",
        attn_type=attn_type,
    )
    self.mlp = MotifMLP(
        hidden_size=self.hidden_size,
        intermediate_size=config.intermediate_size,
        hidden_act=config.hidden_act,
        quant_config=quant_config,
        bias=getattr(config, "use_bias", False),
        prefix=f"{prefix}.mlp",
    )
    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                            eps=config.rms_norm_eps)

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/motif.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    # Self Attention
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)
    hidden_states = self.self_attn(positions=positions,
                                   hidden_states=hidden_states)

    # Fully Connected
    hidden_states, residual = self.post_attention_layernorm(
        hidden_states, residual)
    hidden_states = self.mlp(hidden_states)
    return hidden_states, residual

MotifForCausalLM

Bases: LlamaForCausalLM, SupportsV0Only

Source code in vllm/model_executor/models/motif.py
class MotifForCausalLM(LlamaForCausalLM, SupportsV0Only):

    def __init__(self,
                 *,
                 vllm_config: VllmConfig,
                 prefix: str = "",
                 layer_type: type[nn.Module] = MotifDecoderLayer):

        # Prefix caching and chunked prefill is not supported for this model.
        assert not vllm_config.cache_config.enable_prefix_caching, \
            "Motif currently does not support prefix caching"
        assert not vllm_config.scheduler_config.chunked_prefill_enabled, \
            "Motif currently does not support chunked prefill"

        super().__init__(vllm_config=vllm_config,
                         prefix=prefix,
                         layer_type=layer_type)

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    layer_type: type[Module] = MotifDecoderLayer,
)
Source code in vllm/model_executor/models/motif.py
def __init__(self,
             *,
             vllm_config: VllmConfig,
             prefix: str = "",
             layer_type: type[nn.Module] = MotifDecoderLayer):

    # Prefix caching and chunked prefill is not supported for this model.
    assert not vllm_config.cache_config.enable_prefix_caching, \
        "Motif currently does not support prefix caching"
    assert not vllm_config.scheduler_config.chunked_prefill_enabled, \
        "Motif currently does not support chunked prefill"

    super().__init__(vllm_config=vllm_config,
                     prefix=prefix,
                     layer_type=layer_type)

MotifMLP

Bases: Module

MLP for the language component of the Motif model, which contains a MergedColumnParallelLinear merging 2 outputs via PolyNorm activation.

Source code in vllm/model_executor/models/motif.py
class MotifMLP(nn.Module):
    """MLP for the language component of the Motif model, which contains a
    MergedColumnParallelLinear merging 2 outputs via PolyNorm activation."""

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str = "poly_norm",
        quant_config: Optional[QuantizationConfig] = None,
        bias: bool = False,
        prefix: str = "",
        reduce_results: bool = True,
    ):
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            input_size=hidden_size,
            output_sizes=[intermediate_size] * 2,
            bias=bias,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj",
        )
        self.down_proj = RowParallelLinear(
            input_size=intermediate_size,
            output_size=hidden_size,
            bias=bias,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=f"{prefix}.down_proj",
        )
        if hidden_act != "poly_norm":
            raise NotImplementedError(f"Unsupported activation: {hidden_act}. "
                                      "Only poly_norm is supported for now.")
        self.act_fn = PolyNorm()
        self.intermediate_size = intermediate_size
        tp_size = get_tensor_model_parallel_world_size()
        if hidden_act == "poly_norm" and tp_size > 1:
            raise NotImplementedError(
                "Tensor parallelism for poly_norm is not supported yet. "
                "Support will be added in the future.")

    def forward(self, x):
        x, _ = self.gate_up_proj(x)
        x = self.act_fn(
            x[..., :self.intermediate_size]) * x[..., self.intermediate_size:]
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = PolyNorm()

down_proj instance-attribute

down_proj = RowParallelLinear(
    input_size=intermediate_size,
    output_size=hidden_size,
    bias=bias,
    quant_config=quant_config,
    reduce_results=reduce_results,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    input_size=hidden_size,
    output_sizes=[intermediate_size] * 2,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

intermediate_size instance-attribute

intermediate_size = intermediate_size

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str = "poly_norm",
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
    prefix: str = "",
    reduce_results: bool = True,
)
Source code in vllm/model_executor/models/motif.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str = "poly_norm",
    quant_config: Optional[QuantizationConfig] = None,
    bias: bool = False,
    prefix: str = "",
    reduce_results: bool = True,
):
    super().__init__()
    self.gate_up_proj = MergedColumnParallelLinear(
        input_size=hidden_size,
        output_sizes=[intermediate_size] * 2,
        bias=bias,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_up_proj",
    )
    self.down_proj = RowParallelLinear(
        input_size=intermediate_size,
        output_size=hidden_size,
        bias=bias,
        quant_config=quant_config,
        reduce_results=reduce_results,
        prefix=f"{prefix}.down_proj",
    )
    if hidden_act != "poly_norm":
        raise NotImplementedError(f"Unsupported activation: {hidden_act}. "
                                  "Only poly_norm is supported for now.")
    self.act_fn = PolyNorm()
    self.intermediate_size = intermediate_size
    tp_size = get_tensor_model_parallel_world_size()
    if hidden_act == "poly_norm" and tp_size > 1:
        raise NotImplementedError(
            "Tensor parallelism for poly_norm is not supported yet. "
            "Support will be added in the future.")

forward

forward(x)
Source code in vllm/model_executor/models/motif.py
def forward(self, x):
    x, _ = self.gate_up_proj(x)
    x = self.act_fn(
        x[..., :self.intermediate_size]) * x[..., self.intermediate_size:]
    x, _ = self.down_proj(x)
    return x