Skip to content

vllm.model_executor.layers.fused_moe.modular_kernel

PrepareResultType module-attribute

ReceiverType module-attribute

ReceiverType = Callable[[], PrepareResultType]

ExpertTokensMetadata dataclass

Metadata regarding expert-token routing.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@dataclass
class ExpertTokensMetadata:
    """
  Metadata regarding expert-token routing.
  """
    expert_num_tokens: torch.Tensor
    expert_num_tokens_cpu: Optional[torch.Tensor]

    @staticmethod
    def make_from_list(expert_num_tokens_list: list[int],
                       device: str) -> "ExpertTokensMetadata":
        expert_num_tokens_cpu = torch.tensor(expert_num_tokens_list,
                                             device="cpu",
                                             dtype=torch.int32)
        return ExpertTokensMetadata(
            expert_num_tokens=expert_num_tokens_cpu.to(device,
                                                       non_blocking=True),
            expert_num_tokens_cpu=expert_num_tokens_cpu)

expert_num_tokens instance-attribute

expert_num_tokens: Tensor

expert_num_tokens_cpu instance-attribute

expert_num_tokens_cpu: Optional[Tensor]

__init__

__init__(
    expert_num_tokens: Tensor,
    expert_num_tokens_cpu: Optional[Tensor],
) -> None

make_from_list staticmethod

make_from_list(
    expert_num_tokens_list: list[int], device: str
) -> ExpertTokensMetadata
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@staticmethod
def make_from_list(expert_num_tokens_list: list[int],
                   device: str) -> "ExpertTokensMetadata":
    expert_num_tokens_cpu = torch.tensor(expert_num_tokens_list,
                                         device="cpu",
                                         dtype=torch.int32)
    return ExpertTokensMetadata(
        expert_num_tokens=expert_num_tokens_cpu.to(device,
                                                   non_blocking=True),
        expert_num_tokens_cpu=expert_num_tokens_cpu)

FusedMoEActivationFormat

Bases: Enum

The standard activation format (num_tokens, hidden dim).

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEActivationFormat(Enum):
    """
    The standard activation format (num_tokens, hidden dim).
    """
    Standard = "standard",
    """
    The batched experts format (num experts, max tokens per expert, hidden dim)
    """
    BatchedExperts = "batched_experts",

BatchedExperts class-attribute instance-attribute

BatchedExperts = ('batched_experts',)

Standard class-attribute instance-attribute

Standard = ('standard',)

The batched experts format (num experts, max tokens per expert, hidden dim)

FusedMoEModularKernel

Bases: Module

This class combines a FusedMoEPrepareAndFinalize instance and a FusedMoEPermuteExpertsUnpermute to provide an interface that is compatible with the fused_experts function in fused_moe.py.

It takes care of managing any required scratch space.

Note: Instances of this class should only be used for a single model layer due to any layer specific state that may be used by the component objects.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
@final
class FusedMoEModularKernel(torch.nn.Module):
    """
    This class combines a FusedMoEPrepareAndFinalize instance and
    a FusedMoEPermuteExpertsUnpermute to provide an interface that
    is compatible with the `fused_experts` function in fused_moe.py.

    It takes care of managing any required scratch space.

    Note: Instances of this class should only be used for a single model
    layer due to any layer specific state that may be used by the component
    objects.
    """

    def __init__(
        self,
        prepare_finalize: FusedMoEPrepareAndFinalize,
        fused_experts: FusedMoEPermuteExpertsUnpermute,
        shared_experts: Optional[torch.nn.Module] = None,
    ):
        super().__init__()
        self.prepare_finalize = prepare_finalize
        self.fused_experts = fused_experts
        self.shared_experts = shared_experts
        assert prepare_finalize.activation_format == \
            fused_experts.activation_formats[0], (
                f"{prepare_finalize.__class__.__name__}."
                f"{prepare_finalize.activation_format} == "
                f"{fused_experts.__class__.__name__}."
                f"{fused_experts.activation_formats[0]}")

    def _do_fused_experts(
        self,
        fused_out: Optional[torch.Tensor],
        a1: torch.Tensor,
        a1q: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        local_num_experts: int,
        expert_map: Optional[torch.Tensor],
        w1_scale: Optional[torch.Tensor],
        w2_scale: Optional[torch.Tensor],
        w1_zp: Optional[torch.Tensor],
        w2_zp: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        expert_tokens_meta: Optional[ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ) -> torch.Tensor:

        _, M, N, K, top_k = _moe_problem_size(a1q, w1, w2, topk_ids)

        (workspace13_shape, workspace2_shape, fused_out_shape,
         workspace_dtype) = self.fused_experts.workspace_shapes(
             a1, a1q, M, N, K, top_k, global_num_experts, local_num_experts,
             expert_tokens_meta)

        # We can reuse the memory between cache1 and cache3 because by the
        # time we need cache3, we're done with cache1.
        workspace13 = torch.empty(prod(workspace13_shape),
                                  device=a1.device,
                                  dtype=workspace_dtype)
        workspace2 = torch.empty(prod(workspace2_shape),
                                 device=a1.device,
                                 dtype=workspace_dtype)

        assert fused_out is None or fused_out.shape == fused_out_shape, (
            f"fused_out {fused_out.shape} but expected {fused_out_shape}")
        if fused_out is None:
            # reuse workspace13 for the output
            fused_out = _resize_cache(workspace13, fused_out_shape)

        self.fused_experts.apply(
            fused_out,
            a1q,
            w1,
            w2,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            activation=activation,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
            w1_zp=w1_zp,
            w2_zp=w2_zp,
            a1q_scale=a1q_scale,
            a2_scale=a2_scale,
            workspace13=workspace13,
            workspace2=workspace2,
            expert_tokens_meta=expert_tokens_meta,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )

        return fused_out

    def _maybe_chunk_fused_experts(
        self,
        a1: torch.Tensor,
        a1q: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        local_num_experts: int,
        expert_map: Optional[torch.Tensor],
        w1_scale: Optional[torch.Tensor],
        w2_scale: Optional[torch.Tensor],
        w1_zp: Optional[torch.Tensor],
        w2_zp: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        expert_tokens_meta: Optional[ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ) -> torch.Tensor:

        _, M, N, K, top_k = _moe_problem_size(a1q, w1, w2, topk_ids)

        CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
        num_chunks = cdiv(M, CHUNK_SIZE)

        # TODO(bnell): get rid of one level here, update slice functions
        # to nops on num_chunks==1

        if not self.fused_experts.supports_chunking() or num_chunks == 1:
            return self._do_fused_experts(
                fused_out=None,
                a1=a1,
                a1q=a1q,
                w1=w1,
                w2=w2,
                topk_weights=topk_weights,
                topk_ids=topk_ids,
                activation=activation,
                global_num_experts=global_num_experts,
                local_num_experts=local_num_experts,
                expert_map=expert_map,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                w1_zp=w1_zp,
                w2_zp=w2_zp,
                a1q_scale=a1q_scale,
                a2_scale=a2_scale,
                expert_tokens_meta=expert_tokens_meta,
                apply_router_weight_on_input=apply_router_weight_on_input,
            )

        # Chunking required case
        assert num_chunks > 1

        # Construct the entire output that can then be processed in chunks.
        (_, _, fused_out_shape, _) = self.fused_experts.workspace_shapes(
            a1, a1q, M, N, K, top_k, global_num_experts, local_num_experts,
            expert_tokens_meta)
        fused_out = torch.empty(fused_out_shape,
                                device=a1q.device,
                                dtype=a1.dtype)

        def slice_input_tensors(
            chunk_idx: int
        ) -> tuple[torch.Tensor, Optional[torch.Tensor],
                   Optional[torch.Tensor], torch.Tensor, torch.Tensor]:
            s = chunk_idx * CHUNK_SIZE
            e = min(s + CHUNK_SIZE, M)
            return (a1q[s:e], _chunk_scales(a1q_scale, s, e),
                    _chunk_scales(a2_scale, s,
                                  e), topk_ids[s:e], topk_weights[s:e])

        def slice_output_tensor(chunk_idx: int) -> torch.Tensor:
            assert fused_out.size(0) % M == 0, (
                f"fused_out shape {fused_out.shape} vs M {M}")
            factor = fused_out.size(0) // M
            out_chunk_size = CHUNK_SIZE * factor
            s = chunk_idx * out_chunk_size
            e = min(s + out_chunk_size, fused_out.size(0))
            return fused_out[s:e]

        def slice_expert_tokens_metadata(
                full_expert_tokens_meta: ExpertTokensMetadata,
                chunk_topk_ids: torch.Tensor, local_num_experts: int,
                expert_map: Optional[torch.Tensor]) -> ExpertTokensMetadata:
            # The existing expert_num_tokens is for the entire a1q
            # input. Chunking forces recomputation of the number
            # of tokens assigned to each expert.
            c_expert_num_tokens = count_expert_num_tokens(
                chunk_topk_ids, local_num_experts, expert_map)

            c_expert_num_tokens_cpu = None
            need_expert_num_tokens_cpu = (
                full_expert_tokens_meta.expert_num_tokens_cpu is not None)
            if need_expert_num_tokens_cpu:
                # This is blocking as some implementations need the count
                # on the CPU to determine appropriate input/out fused-moe
                # buffers
                c_expert_num_tokens_cpu = c_expert_num_tokens.to(
                    "cpu", non_blocking=False)

            return ExpertTokensMetadata(
                expert_num_tokens=c_expert_num_tokens,
                expert_num_tokens_cpu=c_expert_num_tokens_cpu)

        for chunk_idx in range(num_chunks):
            c_a1q, c_a1q_scale, c_a2_scale, c_topk_ids, c_topk_weights = (
                slice_input_tensors(chunk_idx))

            c_expert_tokens_meta = None
            if expert_tokens_meta is not None:
                c_expert_tokens_meta = slice_expert_tokens_metadata(
                    expert_tokens_meta, c_topk_ids, local_num_experts,
                    expert_map)

            self._do_fused_experts(
                fused_out=slice_output_tensor(chunk_idx),
                a1=a1,
                a1q=c_a1q,
                w1=w1,
                w2=w2,
                topk_weights=c_topk_weights,
                topk_ids=c_topk_ids,
                activation=activation,
                global_num_experts=global_num_experts,
                local_num_experts=local_num_experts,
                expert_map=expert_map,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                w1_zp=w1_zp,
                w2_zp=w2_zp,
                a1q_scale=c_a1q_scale,
                a2_scale=c_a2_scale,
                expert_tokens_meta=c_expert_tokens_meta,
                apply_router_weight_on_input=apply_router_weight_on_input,
            )

        return fused_out

    def forward(
        self,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        inplace: bool = False,
        activation: str = "silu",
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        w1_scale: Optional[torch.Tensor] = None,
        w2_scale: Optional[torch.Tensor] = None,
        w1_zp: Optional[torch.Tensor] = None,
        w2_zp: Optional[torch.Tensor] = None,
        a1_scale: Optional[torch.Tensor] = None,
        a2_scale: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        """
        This function computes a Mixture of Experts (MoE) layer using two sets
        of weights, w1 and w2, and top-k gating mechanism.

        Parameters:
        - hidden_states: (torch.Tensor): The input tensor to the MoE layer.
        - w1 (torch.Tensor): The first set of expert weights.
        - w2 (torch.Tensor): The second set of expert weights.
        - topk_weights (torch.Tensor): The topk weights applied at the end of
          the layer.
        - topk_ids (torch.Tensor): A map of row to expert id.
        - inplace (bool): If True, perform the operation in-place.
          Defaults to False.
        - activation (str): The activation function to apply after the first
          MoE layer.
        - global_num_experts (int): The total number of experts in the global
          expert space.
        - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
          from the global expert space to the local expert space of the expert
          parallel shard.
        - w1_scale (Optional[torch.Tensor]): Optional scale to be used for w1.
        - w2_scale (Optional[torch.Tensor]): Optional scale to be used for w2.
        - w1_zp (Optional[torch.Tensor]): Optional zero points to be used for
          w1.
        - w2_zp (Optional[torch.Tensor]): Optional zero points to be used for
          w2.
        - a1_scale (Optional[torch.Tensor]): Optional scale to be used for a1.
        - a2_scale (Optional[torch.Tensor]): Optional scale to be used for a2.
        - apply_router_weight_on_input (bool): When true, the topk weights are
          applied directly on the inputs. This is only applicable when topk is
          1.

        Returns:
        - torch.Tensor: The output tensor after applying the MoE layer.
        """

        a1 = hidden_states
        output = a1 if inplace else torch.zeros_like(a1)

        local_num_experts = w1.size(0)
        if global_num_experts == -1:
            global_num_experts = local_num_experts

        shared_output: torch.Tensor

        if (not self.prepare_finalize.supports_async()
                or self.shared_experts is None):

            # Run shared experts serially with dispatch.
            if self.shared_experts is not None:
                shared_output = self.shared_experts(a1)

            (a1q, a1q_scale, expert_tokens_meta, _expert_topk_ids,
             _expert_topk_weights) = self.prepare_finalize.prepare(
                 a1,
                 a1_scale,
                 a2_scale,
                 topk_weights,
                 topk_ids,
                 global_num_experts,
                 expert_map,
                 apply_router_weight_on_input,
                 self.fused_experts.quant_config,
             )
        else:
            # Overlap shared expert compute with all2all dispatch.
            receiver = self.prepare_finalize.prepare_async(
                a1,
                a1_scale,
                a2_scale,
                topk_weights,
                topk_ids,
                global_num_experts,
                expert_map,
                apply_router_weight_on_input,
                self.fused_experts.quant_config,
            )

            assert self.shared_experts is not None
            shared_output = self.shared_experts(a1)

            (a1q, a1q_scale, expert_tokens_meta, _expert_topk_ids,
             _expert_topk_weights) = receiver()

        # Maybe prepare gathered topk_ids and topk_weights from other EP ranks.
        topk_ids = topk_ids if _expert_topk_ids is None else _expert_topk_ids
        topk_weights = (topk_weights if _expert_topk_weights is None else
                        _expert_topk_weights)

        fused_out = None

        if a1q.numel() == 0:
            # This happens when none of the tokens from the all2all reach this
            # EP rank. Also, note that this is only relevant for CUDAGraph
            # incompatible all2all kernels like the DeepEP high-throughput
            # kernels. CUDAGraph compatible all2all kernels like the pplx
            # kernels and the DeepEP low-latency kernels are always batched
            # and can never run into the tensor.numel() == 0 case.
            fused_out = torch.empty_like(a1q).to(dtype=a1.dtype)
        else:
            fused_out = self._maybe_chunk_fused_experts(
                a1=a1,
                a1q=a1q,
                w1=w1,
                w2=w2,
                topk_weights=topk_weights,
                topk_ids=topk_ids,
                activation=activation,
                global_num_experts=global_num_experts,
                local_num_experts=local_num_experts,
                expert_map=expert_map,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                w1_zp=w1_zp,
                w2_zp=w2_zp,
                a1q_scale=a1q_scale,
                a2_scale=a2_scale,
                expert_tokens_meta=expert_tokens_meta,
                apply_router_weight_on_input=apply_router_weight_on_input,
            )

        self.prepare_finalize.finalize(
            output,
            fused_out,
            topk_weights,
            topk_ids,
            apply_router_weight_on_input,
            self.fused_experts.finalize_weight_and_reduce_impl(),
        )

        if self.shared_experts is None:
            return output
        else:
            return shared_output, output

fused_experts instance-attribute

fused_experts = fused_experts

prepare_finalize instance-attribute

prepare_finalize = prepare_finalize

shared_experts instance-attribute

shared_experts = shared_experts

__init__

__init__(
    prepare_finalize: FusedMoEPrepareAndFinalize,
    fused_experts: FusedMoEPermuteExpertsUnpermute,
    shared_experts: Optional[Module] = None,
)
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def __init__(
    self,
    prepare_finalize: FusedMoEPrepareAndFinalize,
    fused_experts: FusedMoEPermuteExpertsUnpermute,
    shared_experts: Optional[torch.nn.Module] = None,
):
    super().__init__()
    self.prepare_finalize = prepare_finalize
    self.fused_experts = fused_experts
    self.shared_experts = shared_experts
    assert prepare_finalize.activation_format == \
        fused_experts.activation_formats[0], (
            f"{prepare_finalize.__class__.__name__}."
            f"{prepare_finalize.activation_format} == "
            f"{fused_experts.__class__.__name__}."
            f"{fused_experts.activation_formats[0]}")

_do_fused_experts

_do_fused_experts(
    fused_out: Optional[Tensor],
    a1: Tensor,
    a1q: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    local_num_experts: int,
    expert_map: Optional[Tensor],
    w1_scale: Optional[Tensor],
    w2_scale: Optional[Tensor],
    w1_zp: Optional[Tensor],
    w2_zp: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
) -> Tensor
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def _do_fused_experts(
    self,
    fused_out: Optional[torch.Tensor],
    a1: torch.Tensor,
    a1q: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    local_num_experts: int,
    expert_map: Optional[torch.Tensor],
    w1_scale: Optional[torch.Tensor],
    w2_scale: Optional[torch.Tensor],
    w1_zp: Optional[torch.Tensor],
    w2_zp: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
) -> torch.Tensor:

    _, M, N, K, top_k = _moe_problem_size(a1q, w1, w2, topk_ids)

    (workspace13_shape, workspace2_shape, fused_out_shape,
     workspace_dtype) = self.fused_experts.workspace_shapes(
         a1, a1q, M, N, K, top_k, global_num_experts, local_num_experts,
         expert_tokens_meta)

    # We can reuse the memory between cache1 and cache3 because by the
    # time we need cache3, we're done with cache1.
    workspace13 = torch.empty(prod(workspace13_shape),
                              device=a1.device,
                              dtype=workspace_dtype)
    workspace2 = torch.empty(prod(workspace2_shape),
                             device=a1.device,
                             dtype=workspace_dtype)

    assert fused_out is None or fused_out.shape == fused_out_shape, (
        f"fused_out {fused_out.shape} but expected {fused_out_shape}")
    if fused_out is None:
        # reuse workspace13 for the output
        fused_out = _resize_cache(workspace13, fused_out_shape)

    self.fused_experts.apply(
        fused_out,
        a1q,
        w1,
        w2,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
        activation=activation,
        global_num_experts=global_num_experts,
        expert_map=expert_map,
        w1_scale=w1_scale,
        w2_scale=w2_scale,
        w1_zp=w1_zp,
        w2_zp=w2_zp,
        a1q_scale=a1q_scale,
        a2_scale=a2_scale,
        workspace13=workspace13,
        workspace2=workspace2,
        expert_tokens_meta=expert_tokens_meta,
        apply_router_weight_on_input=apply_router_weight_on_input,
    )

    return fused_out

_maybe_chunk_fused_experts

_maybe_chunk_fused_experts(
    a1: Tensor,
    a1q: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    local_num_experts: int,
    expert_map: Optional[Tensor],
    w1_scale: Optional[Tensor],
    w2_scale: Optional[Tensor],
    w1_zp: Optional[Tensor],
    w2_zp: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
) -> Tensor
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def _maybe_chunk_fused_experts(
    self,
    a1: torch.Tensor,
    a1q: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    local_num_experts: int,
    expert_map: Optional[torch.Tensor],
    w1_scale: Optional[torch.Tensor],
    w2_scale: Optional[torch.Tensor],
    w1_zp: Optional[torch.Tensor],
    w2_zp: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
) -> torch.Tensor:

    _, M, N, K, top_k = _moe_problem_size(a1q, w1, w2, topk_ids)

    CHUNK_SIZE = envs.VLLM_FUSED_MOE_CHUNK_SIZE
    num_chunks = cdiv(M, CHUNK_SIZE)

    # TODO(bnell): get rid of one level here, update slice functions
    # to nops on num_chunks==1

    if not self.fused_experts.supports_chunking() or num_chunks == 1:
        return self._do_fused_experts(
            fused_out=None,
            a1=a1,
            a1q=a1q,
            w1=w1,
            w2=w2,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            activation=activation,
            global_num_experts=global_num_experts,
            local_num_experts=local_num_experts,
            expert_map=expert_map,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
            w1_zp=w1_zp,
            w2_zp=w2_zp,
            a1q_scale=a1q_scale,
            a2_scale=a2_scale,
            expert_tokens_meta=expert_tokens_meta,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )

    # Chunking required case
    assert num_chunks > 1

    # Construct the entire output that can then be processed in chunks.
    (_, _, fused_out_shape, _) = self.fused_experts.workspace_shapes(
        a1, a1q, M, N, K, top_k, global_num_experts, local_num_experts,
        expert_tokens_meta)
    fused_out = torch.empty(fused_out_shape,
                            device=a1q.device,
                            dtype=a1.dtype)

    def slice_input_tensors(
        chunk_idx: int
    ) -> tuple[torch.Tensor, Optional[torch.Tensor],
               Optional[torch.Tensor], torch.Tensor, torch.Tensor]:
        s = chunk_idx * CHUNK_SIZE
        e = min(s + CHUNK_SIZE, M)
        return (a1q[s:e], _chunk_scales(a1q_scale, s, e),
                _chunk_scales(a2_scale, s,
                              e), topk_ids[s:e], topk_weights[s:e])

    def slice_output_tensor(chunk_idx: int) -> torch.Tensor:
        assert fused_out.size(0) % M == 0, (
            f"fused_out shape {fused_out.shape} vs M {M}")
        factor = fused_out.size(0) // M
        out_chunk_size = CHUNK_SIZE * factor
        s = chunk_idx * out_chunk_size
        e = min(s + out_chunk_size, fused_out.size(0))
        return fused_out[s:e]

    def slice_expert_tokens_metadata(
            full_expert_tokens_meta: ExpertTokensMetadata,
            chunk_topk_ids: torch.Tensor, local_num_experts: int,
            expert_map: Optional[torch.Tensor]) -> ExpertTokensMetadata:
        # The existing expert_num_tokens is for the entire a1q
        # input. Chunking forces recomputation of the number
        # of tokens assigned to each expert.
        c_expert_num_tokens = count_expert_num_tokens(
            chunk_topk_ids, local_num_experts, expert_map)

        c_expert_num_tokens_cpu = None
        need_expert_num_tokens_cpu = (
            full_expert_tokens_meta.expert_num_tokens_cpu is not None)
        if need_expert_num_tokens_cpu:
            # This is blocking as some implementations need the count
            # on the CPU to determine appropriate input/out fused-moe
            # buffers
            c_expert_num_tokens_cpu = c_expert_num_tokens.to(
                "cpu", non_blocking=False)

        return ExpertTokensMetadata(
            expert_num_tokens=c_expert_num_tokens,
            expert_num_tokens_cpu=c_expert_num_tokens_cpu)

    for chunk_idx in range(num_chunks):
        c_a1q, c_a1q_scale, c_a2_scale, c_topk_ids, c_topk_weights = (
            slice_input_tensors(chunk_idx))

        c_expert_tokens_meta = None
        if expert_tokens_meta is not None:
            c_expert_tokens_meta = slice_expert_tokens_metadata(
                expert_tokens_meta, c_topk_ids, local_num_experts,
                expert_map)

        self._do_fused_experts(
            fused_out=slice_output_tensor(chunk_idx),
            a1=a1,
            a1q=c_a1q,
            w1=w1,
            w2=w2,
            topk_weights=c_topk_weights,
            topk_ids=c_topk_ids,
            activation=activation,
            global_num_experts=global_num_experts,
            local_num_experts=local_num_experts,
            expert_map=expert_map,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
            w1_zp=w1_zp,
            w2_zp=w2_zp,
            a1q_scale=c_a1q_scale,
            a2_scale=c_a2_scale,
            expert_tokens_meta=c_expert_tokens_meta,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )

    return fused_out

forward

forward(
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    inplace: bool = False,
    activation: str = "silu",
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    w1_scale: Optional[Tensor] = None,
    w2_scale: Optional[Tensor] = None,
    w1_zp: Optional[Tensor] = None,
    w2_zp: Optional[Tensor] = None,
    a1_scale: Optional[Tensor] = None,
    a2_scale: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
) -> Union[Tensor, tuple[Tensor, Tensor]]

This function computes a Mixture of Experts (MoE) layer using two sets of weights, w1 and w2, and top-k gating mechanism.

Parameters: - hidden_states: (torch.Tensor): The input tensor to the MoE layer. - w1 (torch.Tensor): The first set of expert weights. - w2 (torch.Tensor): The second set of expert weights. - topk_weights (torch.Tensor): The topk weights applied at the end of the layer. - topk_ids (torch.Tensor): A map of row to expert id. - inplace (bool): If True, perform the operation in-place. Defaults to False. - activation (str): The activation function to apply after the first MoE layer. - global_num_experts (int): The total number of experts in the global expert space. - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - w1_scale (Optional[torch.Tensor]): Optional scale to be used for w1. - w2_scale (Optional[torch.Tensor]): Optional scale to be used for w2. - w1_zp (Optional[torch.Tensor]): Optional zero points to be used for w1. - w2_zp (Optional[torch.Tensor]): Optional zero points to be used for w2. - a1_scale (Optional[torch.Tensor]): Optional scale to be used for a1. - a2_scale (Optional[torch.Tensor]): Optional scale to be used for a2. - apply_router_weight_on_input (bool): When true, the topk weights are applied directly on the inputs. This is only applicable when topk is 1.

Returns: - torch.Tensor: The output tensor after applying the MoE layer.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def forward(
    self,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    inplace: bool = False,
    activation: str = "silu",
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    w1_scale: Optional[torch.Tensor] = None,
    w2_scale: Optional[torch.Tensor] = None,
    w1_zp: Optional[torch.Tensor] = None,
    w2_zp: Optional[torch.Tensor] = None,
    a1_scale: Optional[torch.Tensor] = None,
    a2_scale: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    """
    This function computes a Mixture of Experts (MoE) layer using two sets
    of weights, w1 and w2, and top-k gating mechanism.

    Parameters:
    - hidden_states: (torch.Tensor): The input tensor to the MoE layer.
    - w1 (torch.Tensor): The first set of expert weights.
    - w2 (torch.Tensor): The second set of expert weights.
    - topk_weights (torch.Tensor): The topk weights applied at the end of
      the layer.
    - topk_ids (torch.Tensor): A map of row to expert id.
    - inplace (bool): If True, perform the operation in-place.
      Defaults to False.
    - activation (str): The activation function to apply after the first
      MoE layer.
    - global_num_experts (int): The total number of experts in the global
      expert space.
    - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
      from the global expert space to the local expert space of the expert
      parallel shard.
    - w1_scale (Optional[torch.Tensor]): Optional scale to be used for w1.
    - w2_scale (Optional[torch.Tensor]): Optional scale to be used for w2.
    - w1_zp (Optional[torch.Tensor]): Optional zero points to be used for
      w1.
    - w2_zp (Optional[torch.Tensor]): Optional zero points to be used for
      w2.
    - a1_scale (Optional[torch.Tensor]): Optional scale to be used for a1.
    - a2_scale (Optional[torch.Tensor]): Optional scale to be used for a2.
    - apply_router_weight_on_input (bool): When true, the topk weights are
      applied directly on the inputs. This is only applicable when topk is
      1.

    Returns:
    - torch.Tensor: The output tensor after applying the MoE layer.
    """

    a1 = hidden_states
    output = a1 if inplace else torch.zeros_like(a1)

    local_num_experts = w1.size(0)
    if global_num_experts == -1:
        global_num_experts = local_num_experts

    shared_output: torch.Tensor

    if (not self.prepare_finalize.supports_async()
            or self.shared_experts is None):

        # Run shared experts serially with dispatch.
        if self.shared_experts is not None:
            shared_output = self.shared_experts(a1)

        (a1q, a1q_scale, expert_tokens_meta, _expert_topk_ids,
         _expert_topk_weights) = self.prepare_finalize.prepare(
             a1,
             a1_scale,
             a2_scale,
             topk_weights,
             topk_ids,
             global_num_experts,
             expert_map,
             apply_router_weight_on_input,
             self.fused_experts.quant_config,
         )
    else:
        # Overlap shared expert compute with all2all dispatch.
        receiver = self.prepare_finalize.prepare_async(
            a1,
            a1_scale,
            a2_scale,
            topk_weights,
            topk_ids,
            global_num_experts,
            expert_map,
            apply_router_weight_on_input,
            self.fused_experts.quant_config,
        )

        assert self.shared_experts is not None
        shared_output = self.shared_experts(a1)

        (a1q, a1q_scale, expert_tokens_meta, _expert_topk_ids,
         _expert_topk_weights) = receiver()

    # Maybe prepare gathered topk_ids and topk_weights from other EP ranks.
    topk_ids = topk_ids if _expert_topk_ids is None else _expert_topk_ids
    topk_weights = (topk_weights if _expert_topk_weights is None else
                    _expert_topk_weights)

    fused_out = None

    if a1q.numel() == 0:
        # This happens when none of the tokens from the all2all reach this
        # EP rank. Also, note that this is only relevant for CUDAGraph
        # incompatible all2all kernels like the DeepEP high-throughput
        # kernels. CUDAGraph compatible all2all kernels like the pplx
        # kernels and the DeepEP low-latency kernels are always batched
        # and can never run into the tensor.numel() == 0 case.
        fused_out = torch.empty_like(a1q).to(dtype=a1.dtype)
    else:
        fused_out = self._maybe_chunk_fused_experts(
            a1=a1,
            a1q=a1q,
            w1=w1,
            w2=w2,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            activation=activation,
            global_num_experts=global_num_experts,
            local_num_experts=local_num_experts,
            expert_map=expert_map,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
            w1_zp=w1_zp,
            w2_zp=w2_zp,
            a1q_scale=a1q_scale,
            a2_scale=a2_scale,
            expert_tokens_meta=expert_tokens_meta,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )

    self.prepare_finalize.finalize(
        output,
        fused_out,
        topk_weights,
        topk_ids,
        apply_router_weight_on_input,
        self.fused_experts.finalize_weight_and_reduce_impl(),
    )

    if self.shared_experts is None:
        return output
    else:
        return shared_output, output

FusedMoEPermuteExpertsUnpermute

Bases: ABC

An abstract base class for the [Permute-Experts-Unpermute] step described above.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEPermuteExpertsUnpermute(ABC):
    """
    An abstract base class for the [Permute-Experts-Unpermute] step described
    above.
    """

    def __init__(
        self,
        quant_config: Optional[FusedMoEQuantConfig],
    ):
        if quant_config is not None:
            self.quant_config = quant_config
        else:
            self.quant_config = FusedMoEQuantConfig()

    @property
    @abstractmethod
    def activation_formats(
            self) -> tuple[FusedMoEActivationFormat, FusedMoEActivationFormat]:
        """
        A property which is a tuple of the input and output activation formats
        for the 'apply' method.
        """
        raise NotImplementedError

    @property
    def quant_dtype(self) -> Optional[torch.dtype]:
        return self.quant_config.quant_dtype

    @property
    def block_shape(self) -> Optional[list[int]]:
        return self.quant_config.block_shape

    @property
    def per_act_token_quant(self) -> bool:
        return self.quant_config.per_act_token_quant

    @property
    def per_out_ch_quant(self) -> bool:
        return self.quant_config.per_out_ch_quant

    # TODO (bnell): make this return a CHUNK_SIZE or None instead?
    @abstractmethod
    def supports_chunking(self) -> bool:
        """
        A flag indicating whether or not this class supports activation
        chunking.
        """
        raise NotImplementedError

    @abstractmethod
    def supports_expert_map(self) -> bool:
        """
        A flag indicating whether or not this class supports expert maps
        """
        raise NotImplementedError

    @abstractmethod
    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        """
        Compute the shapes for the temporary and final outputs of the two gemms
        and activation in the fused expert function.  Since the gemms are
        independent, the workspace for the first gemm can be shared with the
        workspace for the last gemm.

        Returns a tuple of:
        - workspace13 shape tuple: must be large enough to hold the
          result of either expert gemm.
        - workspace2 shape tuple: must be large enough to hold the
          result of the activation function.
        - output shape tuple: must be exact size of the final gemm output.
        - Workspace type: The dtype to use for the workspace tensors.
        - Note: in order for activation chunking to work, the first dimension
          of each tuple must be the number of tokens.
        """
        raise NotImplementedError

    def activation(self, activation: str, output: torch.Tensor,
                   input: torch.Tensor) -> None:
        assert output.size(-1) * 2 == input.size(-1)
        if activation == "silu":
            torch.ops._C.silu_and_mul(output, input)
        elif activation == "gelu":
            torch.ops._C.gelu_and_mul(output, input)
        else:
            raise ValueError(f"Unsupported FusedMoe activation: {activation}")

    def enable_chunking(self):
        return envs.VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING and \
          self.supports_chunking()

    def finalize_weight_and_reduce_impl(self) -> TopKWeightAndReduce:
        raise NotImplementedError

    @abstractmethod
    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        w1_scale: Optional[torch.Tensor],
        w2_scale: Optional[torch.Tensor],
        w1_zp: Optional[torch.Tensor],
        w2_zp: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        """
        This function computes the intermediate result of a Mixture of Experts
        (MoE) layer using two sets of weights, w1 and w2.

        Parameters:
        - output: (torch.Tensor): The unweighted, unreduced output tensor.
        - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE
          layer.
        - w1 (torch.Tensor): The first set of expert weights.
        - w2 (torch.Tensor): The second set of expert weights.
        - topk_weights: A map of row to expert weights. Some implementations
          choose to do weight application. 
        - topk_ids (torch.Tensor): A map of row to expert id.
        - activation (str): The activation function to apply after the first
          MoE layer.
        - global_num_experts (int): The total number of experts in the global
          expert space.
        - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
          from the global expert space to the local expert space of the expert
          parallel shard.
        - w1_scale (Optional[torch.Tensor]): Optional scale to be used for w1.
        - w2_scale (Optional[torch.Tensor]): Optional scale to be used for w2.
        - w1_zp (Optional[torch.Tensor]): Optional zero points to be used for
          w1.
        - w2_zp (Optional[torch.Tensor]): Optional zero points to be used for
          w2.
        - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be
          used for a1.
        - a2_scale (Optional[torch.Tensor]): Optional scale to be used for a2.
        - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs
          must be large enough to hold output of either MoE gemm.
        - workspace2 (torch.Tensor): A scratch tensor used for the activation
          function.
        - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional
          ExpertTokensMetadata object containing gpu/cpu tensors
          as big as the number of local experts with the information about the
          number of tokens assigned to each local expert.
        - apply_router_weight_on_input: True if router weights are already
          applied on the input. This is relevant if the implementation
          chooses to do weight application.
        """
        raise NotImplementedError

activation_formats abstractmethod property

A property which is a tuple of the input and output activation formats for the 'apply' method.

block_shape property

block_shape: Optional[list[int]]

per_act_token_quant property

per_act_token_quant: bool

per_out_ch_quant property

per_out_ch_quant: bool

quant_config instance-attribute

quant_config = quant_config

quant_dtype property

quant_dtype: Optional[dtype]

__init__

__init__(quant_config: Optional[FusedMoEQuantConfig])
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def __init__(
    self,
    quant_config: Optional[FusedMoEQuantConfig],
):
    if quant_config is not None:
        self.quant_config = quant_config
    else:
        self.quant_config = FusedMoEQuantConfig()

activation

activation(
    activation: str, output: Tensor, input: Tensor
) -> None
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def activation(self, activation: str, output: torch.Tensor,
               input: torch.Tensor) -> None:
    assert output.size(-1) * 2 == input.size(-1)
    if activation == "silu":
        torch.ops._C.silu_and_mul(output, input)
    elif activation == "gelu":
        torch.ops._C.gelu_and_mul(output, input)
    else:
        raise ValueError(f"Unsupported FusedMoe activation: {activation}")

apply abstractmethod

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    w1_scale: Optional[Tensor],
    w2_scale: Optional[Tensor],
    w1_zp: Optional[Tensor],
    w2_zp: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)

This function computes the intermediate result of a Mixture of Experts (MoE) layer using two sets of weights, w1 and w2.

Parameters: - output: (torch.Tensor): The unweighted, unreduced output tensor. - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE layer. - w1 (torch.Tensor): The first set of expert weights. - w2 (torch.Tensor): The second set of expert weights. - topk_weights: A map of row to expert weights. Some implementations choose to do weight application. - topk_ids (torch.Tensor): A map of row to expert id. - activation (str): The activation function to apply after the first MoE layer. - global_num_experts (int): The total number of experts in the global expert space. - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - w1_scale (Optional[torch.Tensor]): Optional scale to be used for w1. - w2_scale (Optional[torch.Tensor]): Optional scale to be used for w2. - w1_zp (Optional[torch.Tensor]): Optional zero points to be used for w1. - w2_zp (Optional[torch.Tensor]): Optional zero points to be used for w2. - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be used for a1. - a2_scale (Optional[torch.Tensor]): Optional scale to be used for a2. - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs must be large enough to hold output of either MoE gemm. - workspace2 (torch.Tensor): A scratch tensor used for the activation function. - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional ExpertTokensMetadata object containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - apply_router_weight_on_input: True if router weights are already applied on the input. This is relevant if the implementation chooses to do weight application.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    w1_scale: Optional[torch.Tensor],
    w2_scale: Optional[torch.Tensor],
    w1_zp: Optional[torch.Tensor],
    w2_zp: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    """
    This function computes the intermediate result of a Mixture of Experts
    (MoE) layer using two sets of weights, w1 and w2.

    Parameters:
    - output: (torch.Tensor): The unweighted, unreduced output tensor.
    - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE
      layer.
    - w1 (torch.Tensor): The first set of expert weights.
    - w2 (torch.Tensor): The second set of expert weights.
    - topk_weights: A map of row to expert weights. Some implementations
      choose to do weight application. 
    - topk_ids (torch.Tensor): A map of row to expert id.
    - activation (str): The activation function to apply after the first
      MoE layer.
    - global_num_experts (int): The total number of experts in the global
      expert space.
    - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
      from the global expert space to the local expert space of the expert
      parallel shard.
    - w1_scale (Optional[torch.Tensor]): Optional scale to be used for w1.
    - w2_scale (Optional[torch.Tensor]): Optional scale to be used for w2.
    - w1_zp (Optional[torch.Tensor]): Optional zero points to be used for
      w1.
    - w2_zp (Optional[torch.Tensor]): Optional zero points to be used for
      w2.
    - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be
      used for a1.
    - a2_scale (Optional[torch.Tensor]): Optional scale to be used for a2.
    - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs
      must be large enough to hold output of either MoE gemm.
    - workspace2 (torch.Tensor): A scratch tensor used for the activation
      function.
    - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional
      ExpertTokensMetadata object containing gpu/cpu tensors
      as big as the number of local experts with the information about the
      number of tokens assigned to each local expert.
    - apply_router_weight_on_input: True if router weights are already
      applied on the input. This is relevant if the implementation
      chooses to do weight application.
    """
    raise NotImplementedError

enable_chunking

enable_chunking()
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def enable_chunking(self):
    return envs.VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING and \
      self.supports_chunking()

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def finalize_weight_and_reduce_impl(self) -> TopKWeightAndReduce:
    raise NotImplementedError

supports_chunking abstractmethod

supports_chunking() -> bool

A flag indicating whether or not this class supports activation chunking.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def supports_chunking(self) -> bool:
    """
    A flag indicating whether or not this class supports activation
    chunking.
    """
    raise NotImplementedError

supports_expert_map abstractmethod

supports_expert_map() -> bool

A flag indicating whether or not this class supports expert maps

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def supports_expert_map(self) -> bool:
    """
    A flag indicating whether or not this class supports expert maps
    """
    raise NotImplementedError

workspace_shapes abstractmethod

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]

Compute the shapes for the temporary and final outputs of the two gemms and activation in the fused expert function. Since the gemms are independent, the workspace for the first gemm can be shared with the workspace for the last gemm.

Returns a tuple of: - workspace13 shape tuple: must be large enough to hold the result of either expert gemm. - workspace2 shape tuple: must be large enough to hold the result of the activation function. - output shape tuple: must be exact size of the final gemm output. - Workspace type: The dtype to use for the workspace tensors. - Note: in order for activation chunking to work, the first dimension of each tuple must be the number of tokens.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    """
    Compute the shapes for the temporary and final outputs of the two gemms
    and activation in the fused expert function.  Since the gemms are
    independent, the workspace for the first gemm can be shared with the
    workspace for the last gemm.

    Returns a tuple of:
    - workspace13 shape tuple: must be large enough to hold the
      result of either expert gemm.
    - workspace2 shape tuple: must be large enough to hold the
      result of the activation function.
    - output shape tuple: must be exact size of the final gemm output.
    - Workspace type: The dtype to use for the workspace tensors.
    - Note: in order for activation chunking to work, the first dimension
      of each tuple must be the number of tokens.
    """
    raise NotImplementedError

FusedMoEPrepareAndFinalize

Bases: ABC

An abstract base class for the [Quantize-Prepare] and [Finalize] steps described above.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEPrepareAndFinalize(ABC):
    """
    An abstract base class for the [Quantize-Prepare] and [Finalize] steps
    described above.
    """

    @abstractmethod
    def prepare(
        self,
        a1: torch.Tensor,
        a1_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        num_experts: int,
        expert_map: Optional[torch.Tensor],
        apply_router_weight_on_input: bool,
        quant_config: FusedMoEQuantConfig,
    ) -> PrepareResultType:
        """
        Perform any quantization (and/or) dispatching needed for this kernel.
        - a1: The (unquantized) input to the MoE layer.
        - a1_scale: Optional scales for a1
        - a2_scale: Optional scales for the second MoE gemm.  Required to make
          sure the quantization is consistent for both gemms.
        - topk_ids: The topk ids.
        - topk_weights: The topk weights.
        - num_experts: The total number of experts in the global expert space.
        - expert_map: A tensor mapping expert indices from the global expert
          space to the local expert space of the expert parallel shard.
        - apply_router_weight_on_input: When True, apply the weights to the
          activations, before quantization + dispatching.

        Returns a tuple of:
        - quantized + dispatched a.
        - quantized + dispatched a1_scales.
        - Optional ExpertTokensMetadata containing gpu/cpu tensors
          as big as the number of local experts with the information about the
          number of tokens assigned to each local expert.
        - Optional dispatched expert topk IDs
        - Optional dispatched expert topk weight
        """
        raise NotImplementedError

    def supports_async(self) -> bool:
        """
        Indicates whether or not this class implements prepare_async.
        """
        return False

    def prepare_async(
        self,
        a1: torch.Tensor,
        a1_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        num_experts: int,
        expert_map: Optional[torch.Tensor],
        apply_router_weight_on_input: bool,
        quant_config: FusedMoEQuantConfig,
    ) -> ReceiverType:
        """
        Perform any quantization (and/or) dispatching needed for this kernel
        but do not wait for results from other workers.
        - a1: The (unquantized) input to the MoE layer.
        - a1_scale: Optional scales for a1
        - a2_scale: Optional scales for the second MoE gemm.  Required to make
          sure the quantization is consistent for both gemms.
        - topk_ids: The topk ids.
        - topk_weights: The topk weights.
        - num_experts: The total number of experts in the global expert space.
        - expert_map: A tensor mapping expert indices from the global expert
          space to the local expert space of the expert parallel shard.
        - apply_router_weight_on_input: When True, apply the weights to the
          activations, before quantization + dispatching.

        Returns a callback that when invoked waits for results from other
        workers and has the same return signature as `prepare`, e.g.

        receiver = obj.prepare_async(...)
        a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

        is equivalent to:

        a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)
        """
        raise NotImplementedError

    @abstractmethod
    def finalize(
        self,
        output: torch.Tensor,
        fused_expert_output: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        apply_router_weight_on_input: bool,
        weight_and_reduce_impl: TopKWeightAndReduce,
    ) -> None:
        """
        Perform any combine plus apply weights and perform a reduction on the
        fused experts output.
        - output: The output tensor, written in place.  Must be (M, K) shape.
        - fused_expert_output: The unweighted, unreduced output of the fused
          experts, it will have (M, topk, K) shape.
        - topk_weights: The weights to be applied to the fused_experts_output.
        - topk_ids: The topk_ids.
        - apply_router_weight_on_input: When False, apply the weights to
          fused_expert_output.
        - weight_and_reduce_impl: An optional TopKWeightAndReduce
          implementation.
        """
        raise NotImplementedError

    @property
    @abstractmethod
    def activation_format(self) -> FusedMoEActivationFormat:
        """
        A property indicating the output format of the activations for the
        'prepare' method.
        """
        raise NotImplementedError

    @abstractmethod
    def topk_indices_dtype(self) -> Optional[torch.dtype]:
        """
        The PrepareFinalize All2All implementations generally constrain the
        dtype of the topk_ids they support. This function returns the
        required topk indices dtype so it can be respected.
        Return None if there are no such restrictions.
        """
        raise NotImplementedError

    @abstractmethod
    def max_num_tokens_per_rank(self) -> Optional[int]:
        """
        Some PrepareFinalize All2All implementations are batched. Meaning,
        they can process only as set of tokens at a time. This
        function returns the batch size i.e the maximum number of tokens
        the implementation can process at a time.
        Return None if there are no such restrictions.
        """
        raise NotImplementedError

    @abstractmethod
    def num_dispatchers(self) -> int:
        raise NotImplementedError

activation_format abstractmethod property

activation_format: FusedMoEActivationFormat

A property indicating the output format of the activations for the 'prepare' method.

finalize abstractmethod

finalize(
    output: Tensor,
    fused_expert_output: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> None

Perform any combine plus apply weights and perform a reduction on the fused experts output. - output: The output tensor, written in place. Must be (M, K) shape. - fused_expert_output: The unweighted, unreduced output of the fused experts, it will have (M, topk, K) shape. - topk_weights: The weights to be applied to the fused_experts_output. - topk_ids: The topk_ids. - apply_router_weight_on_input: When False, apply the weights to fused_expert_output. - weight_and_reduce_impl: An optional TopKWeightAndReduce implementation.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def finalize(
    self,
    output: torch.Tensor,
    fused_expert_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> None:
    """
    Perform any combine plus apply weights and perform a reduction on the
    fused experts output.
    - output: The output tensor, written in place.  Must be (M, K) shape.
    - fused_expert_output: The unweighted, unreduced output of the fused
      experts, it will have (M, topk, K) shape.
    - topk_weights: The weights to be applied to the fused_experts_output.
    - topk_ids: The topk_ids.
    - apply_router_weight_on_input: When False, apply the weights to
      fused_expert_output.
    - weight_and_reduce_impl: An optional TopKWeightAndReduce
      implementation.
    """
    raise NotImplementedError

max_num_tokens_per_rank abstractmethod

max_num_tokens_per_rank() -> Optional[int]

Some PrepareFinalize All2All implementations are batched. Meaning, they can process only as set of tokens at a time. This function returns the batch size i.e the maximum number of tokens the implementation can process at a time. Return None if there are no such restrictions.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def max_num_tokens_per_rank(self) -> Optional[int]:
    """
    Some PrepareFinalize All2All implementations are batched. Meaning,
    they can process only as set of tokens at a time. This
    function returns the batch size i.e the maximum number of tokens
    the implementation can process at a time.
    Return None if there are no such restrictions.
    """
    raise NotImplementedError

num_dispatchers abstractmethod

num_dispatchers() -> int
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def num_dispatchers(self) -> int:
    raise NotImplementedError

prepare abstractmethod

prepare(
    a1: Tensor,
    a1_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    topk_weights: Tensor,
    topk_ids: Tensor,
    num_experts: int,
    expert_map: Optional[Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> PrepareResultType

Perform any quantization (and/or) dispatching needed for this kernel. - a1: The (unquantized) input to the MoE layer. - a1_scale: Optional scales for a1 - a2_scale: Optional scales for the second MoE gemm. Required to make sure the quantization is consistent for both gemms. - topk_ids: The topk ids. - topk_weights: The topk weights. - num_experts: The total number of experts in the global expert space. - expert_map: A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - apply_router_weight_on_input: When True, apply the weights to the activations, before quantization + dispatching.

Returns a tuple of: - quantized + dispatched a. - quantized + dispatched a1_scales. - Optional ExpertTokensMetadata containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - Optional dispatched expert topk IDs - Optional dispatched expert topk weight

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def prepare(
    self,
    a1: torch.Tensor,
    a1_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    num_experts: int,
    expert_map: Optional[torch.Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> PrepareResultType:
    """
    Perform any quantization (and/or) dispatching needed for this kernel.
    - a1: The (unquantized) input to the MoE layer.
    - a1_scale: Optional scales for a1
    - a2_scale: Optional scales for the second MoE gemm.  Required to make
      sure the quantization is consistent for both gemms.
    - topk_ids: The topk ids.
    - topk_weights: The topk weights.
    - num_experts: The total number of experts in the global expert space.
    - expert_map: A tensor mapping expert indices from the global expert
      space to the local expert space of the expert parallel shard.
    - apply_router_weight_on_input: When True, apply the weights to the
      activations, before quantization + dispatching.

    Returns a tuple of:
    - quantized + dispatched a.
    - quantized + dispatched a1_scales.
    - Optional ExpertTokensMetadata containing gpu/cpu tensors
      as big as the number of local experts with the information about the
      number of tokens assigned to each local expert.
    - Optional dispatched expert topk IDs
    - Optional dispatched expert topk weight
    """
    raise NotImplementedError

prepare_async

prepare_async(
    a1: Tensor,
    a1_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    topk_weights: Tensor,
    topk_ids: Tensor,
    num_experts: int,
    expert_map: Optional[Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> ReceiverType

Perform any quantization (and/or) dispatching needed for this kernel but do not wait for results from other workers. - a1: The (unquantized) input to the MoE layer. - a1_scale: Optional scales for a1 - a2_scale: Optional scales for the second MoE gemm. Required to make sure the quantization is consistent for both gemms. - topk_ids: The topk ids. - topk_weights: The topk weights. - num_experts: The total number of experts in the global expert space. - expert_map: A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - apply_router_weight_on_input: When True, apply the weights to the activations, before quantization + dispatching.

Returns a callback that when invoked waits for results from other workers and has the same return signature as prepare, e.g.

receiver = obj.prepare_async(...) a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

is equivalent to:

a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def prepare_async(
    self,
    a1: torch.Tensor,
    a1_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    num_experts: int,
    expert_map: Optional[torch.Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> ReceiverType:
    """
    Perform any quantization (and/or) dispatching needed for this kernel
    but do not wait for results from other workers.
    - a1: The (unquantized) input to the MoE layer.
    - a1_scale: Optional scales for a1
    - a2_scale: Optional scales for the second MoE gemm.  Required to make
      sure the quantization is consistent for both gemms.
    - topk_ids: The topk ids.
    - topk_weights: The topk weights.
    - num_experts: The total number of experts in the global expert space.
    - expert_map: A tensor mapping expert indices from the global expert
      space to the local expert space of the expert parallel shard.
    - apply_router_weight_on_input: When True, apply the weights to the
      activations, before quantization + dispatching.

    Returns a callback that when invoked waits for results from other
    workers and has the same return signature as `prepare`, e.g.

    receiver = obj.prepare_async(...)
    a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

    is equivalent to:

    a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)
    """
    raise NotImplementedError

supports_async

supports_async() -> bool

Indicates whether or not this class implements prepare_async.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def supports_async(self) -> bool:
    """
    Indicates whether or not this class implements prepare_async.
    """
    return False

topk_indices_dtype abstractmethod

topk_indices_dtype() -> Optional[dtype]

The PrepareFinalize All2All implementations generally constrain the dtype of the topk_ids they support. This function returns the required topk indices dtype so it can be respected. Return None if there are no such restrictions.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def topk_indices_dtype(self) -> Optional[torch.dtype]:
    """
    The PrepareFinalize All2All implementations generally constrain the
    dtype of the topk_ids they support. This function returns the
    required topk indices dtype so it can be respected.
    Return None if there are no such restrictions.
    """
    raise NotImplementedError

TopKWeightAndReduce

Bases: ABC

An abstract base class for weight application and reduction implementations.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class TopKWeightAndReduce(ABC):
    """
    An abstract base class for weight application and reduction implementations.
    """

    @abstractmethod
    def apply(self, output: Optional[torch.Tensor],
              fused_expert_output: torch.Tensor, topk_weights: torch.Tensor,
              topk_ids: torch.Tensor,
              apply_router_weight_on_input: bool) -> torch.Tensor:
        """
        Apply topk_weights to the fused_experts_outputs and/or reduce.
        If an output tensor is not passed, it will be created in the
        function.
        """
        raise NotImplementedError

apply abstractmethod

apply(
    output: Optional[Tensor],
    fused_expert_output: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    apply_router_weight_on_input: bool,
) -> Tensor

Apply topk_weights to the fused_experts_outputs and/or reduce. If an output tensor is not passed, it will be created in the function.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def apply(self, output: Optional[torch.Tensor],
          fused_expert_output: torch.Tensor, topk_weights: torch.Tensor,
          topk_ids: torch.Tensor,
          apply_router_weight_on_input: bool) -> torch.Tensor:
    """
    Apply topk_weights to the fused_experts_outputs and/or reduce.
    If an output tensor is not passed, it will be created in the
    function.
    """
    raise NotImplementedError

_chunk_scales

_chunk_scales(
    scales: Optional[Tensor], start: int, end: int
) -> Optional[Tensor]
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def _chunk_scales(scales: Optional[torch.Tensor], start: int,
                  end: int) -> Optional[torch.Tensor]:
    if scales is not None:
        if scales.numel() == 1:
            return scales
        else:
            return scales[start:end]
    return None

_moe_problem_size

_moe_problem_size(
    a1: Tensor, w1: Tensor, w2: Tensor, topk_ids: Tensor
) -> tuple[int, int, int, int, int]

Extract the MoE problem size from the given tensor arguments: - a: The hidden states, input to the MoE layer. - w1: The first set of expert weights. - w2: The second set of expert weights. - topk_ids: The topk ids.

Note: extracting the problem shape from the weight and activation tensors is not obvious. It needs to be done this way specifically due to subtle issues with particular kernels, e.g. the int4 kernels divide the trailing dimension by two, so it's not "correct" to extract N or K from the trailing dimension of w1 or w2. Similarly, some kernels transpose the weights, so this needs to be kept in mind.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def _moe_problem_size(
    a1: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_ids: torch.Tensor,
) -> tuple[int, int, int, int, int]:
    """
    Extract the MoE problem size from the given tensor arguments:
    - a: The hidden states, input to the MoE layer.
    - w1: The first set of expert weights.
    - w2: The second set of expert weights.
    - topk_ids: The topk ids.

    Note: extracting the problem shape from the weight and activation tensors is
    not obvious.  It needs to be done this way specifically due to subtle issues
    with particular kernels, e.g. the int4 kernels divide the trailing dimension
    by two, so it's not "correct" to extract N or K from the trailing dimension
    of w1 or w2.  Similarly, some kernels transpose the weights, so this needs
    to be kept in mind.
    """
    assert w1.dim() == 3 and w2.dim() == 3
    E, N, _ = w1.size()
    K = w2.size(1)

    if a1.dim() == 2:
        # Make sure we are using the correct a1 (pre-permute).
        assert topk_ids.size(0) == a1.size(0), \
            f"{topk_ids.size(0)} != {a1.size(0)}"
        M = a1.size(0)
    else:
        assert a1.dim() == 3
        assert a1.size(0) == E, f"{a1.size(0)} == {E}"
        M = a1.size(1)  # This is max_num_tokens

    assert topk_ids.dim() == 2
    topk = topk_ids.size(1)

    return E, M, N, K, topk