vllm.attention.backends.flashmla ¶
FlashMLABackend ¶
Bases: MLACommonBackend
Source code in vllm/attention/backends/flashmla.py
get_builder_cls staticmethod
¶
get_builder_cls() -> Type[FlashMLAMetadataBuilder]
get_impl_cls staticmethod
¶
get_impl_cls() -> Type[FlashMLAImpl]
get_metadata_cls staticmethod
¶
get_metadata_cls() -> Type[FlashMLAMetadata]
FlashMLAImpl ¶
Bases: MLACommonImpl[FlashMLAMetadata]
Source code in vllm/attention/backends/flashmla.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
__init__ ¶
__init__(
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str] = None,
**mla_args,
) -> None
Source code in vllm/attention/backends/flashmla.py
_forward_decode ¶
_forward_decode(
q_nope: Tensor,
q_pe: Tensor,
kv_c_and_k_pe_cache: Tensor,
attn_metadata: FlashMLAMetadata,
) -> Tensor
Source code in vllm/attention/backends/flashmla.py
FlashMLAMetadata dataclass
¶
Bases: MLACommonMetadata
Source code in vllm/attention/backends/flashmla.py
decode_tile_scheduler_metadata class-attribute
instance-attribute
¶
__init__ ¶
__init__(
num_prefills: int,
num_prefill_tokens: int,
num_decode_tokens: int,
slot_mapping: Tensor,
multi_modal_placeholder_index_maps: Optional[
Dict[str, IndexMap]
],
enable_kv_scales_calculation: bool,
use_cuda_graph: bool,
seq_lens: Optional[List[int]],
seq_lens_tensor: Optional[Tensor],
max_prefill_seq_len: int,
max_decode_seq_len: int,
context_lens_tensor: Optional[Tensor],
block_tables: Optional[Tensor],
max_query_len: Optional[int] = None,
max_decode_query_len: Optional[int] = None,
query_start_loc: Optional[Tensor] = None,
seq_start_loc: Optional[Tensor] = None,
_cached_prefill_metadata: Optional[Any] = None,
_cached_decode_metadata: Optional[Any] = None,
head_dim: Optional[int] = None,
is_profile_run: bool = False,
context_chunk_cu_seq_lens: Optional[Tensor] = None,
context_chunk_starts: Optional[Tensor] = None,
context_chunk_seq_tot: Optional[List[int]] = None,
context_chunk_max_seq_lens: Optional[List[int]] = None,
context_chunk_workspace: Optional[Tensor] = None,
decode_tile_scheduler_metadata: Optional[
Tuple[Tensor, Tensor]
] = None,
decode_num_splits: Optional[Tensor] = None,
) -> None
FlashMLAMetadataBuilder ¶
Bases: MLACommonMetadataBuilder[FlashMLAMetadata]
Source code in vllm/attention/backends/flashmla.py
__init__ ¶
build ¶
Source code in vllm/attention/backends/flashmla.py
FlashMLAState ¶
Bases: MLACommonState[FlashMLAMetadata]
Source code in vllm/attention/backends/flashmla.py
__init__ ¶
get_graph_input_buffers ¶
get_graph_input_buffers(
attn_metadata, is_encoder_decoder_model: bool = False
)
Source code in vllm/attention/backends/flashmla.py
graph_capture ¶
graph_capture(max_batch_size: int)
Source code in vllm/attention/backends/flashmla.py
graph_capture_get_metadata_for_batch ¶
Source code in vllm/attention/backends/flashmla.py
prepare_graph_input_buffers ¶
prepare_graph_input_buffers(
input_buffers,
attn_metadata,
is_encoder_decoder_model: bool = False,
)